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Abstract 

This paper introduces a framework for embedding intelligence in the Internet of Things (IoT) networks. The 

framework draws upon agent-based modeling, swarm intelligence, social insect behavior, and evolutionary 

adaptation. The key principles for each of these areas are first discussed. These concepts are then discussed 

from an IoTs perspective. The resulting capabilities and potential of embedding this type of intelligence are 

outlined.  
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1. INTRODUCTION 

An approach to developing distributed solutions 

for problems is to take an approach based on Complex 

Adaptive Systems (CAS). CAS are dynamic systems that 

adapt to an environment and evolve as necessary when 

conditions in the environment change [1]. This adaptation 

and evolution are within the context of all other parts of 

the environment, an ecosystem. Adaptation occurs in 

concert with other related systems. In this sense, this is co-

evolution. A key aspect of CAS is that understanding the 

individual systems alone does not provide an understanding 

of the whole’s systems behavior. The whole system is 

more than the sum of its parts. 

One area of study in CAS is swarmed intelligence. 

Swarm intelligence is biologically motivated by the study 

of social insects, flocks of birds, herds, and pedestrians. 

Colonies of social insects (bees, ants, wasps) achieve 

adaptive, sustainable, reliable, intelligent complex system-

level performance without central control [2]. The interesting 

thing about this is that the performance is derived from the 

interaction of individual insects which are unreliable and 

unintelligent. These algorithms have been found to address 

complex problems that were difficult before or required 

faster completion time.  

Swarm intelligence relies on individual elements 

with decision making and action capabilities. It is then 

logical to examine the role of agent-based modeling in 

swarm intelligence applications by treating each social 

insect as an agent. Agent-based modeling (ABM) is based on 

developing computational solutions through a configuration 

of agents interacting with each other [3]. ABM provides a 

framework for examining the interactions of artificial 

agents in a simulated environment. This can lead to an 

understanding of how agent-based outcomes can occur in 

a real setting. Agents typically have decision-making 

procedures as well as a set of possible actions to take based 

on the decisions made.   

The introduction of the Internet of Things (IoT) 

concept provides a local/global perspective of internet-

connected things. This is local in the sense that each thing 

has a local role. Global in the sense that the combined 

actions of things can result in global outcomes. IoT is a 

system of interrelated computing and mechanical devices 

[4]. The devices can interact over a network with or 

without involving human interaction. IoT now includes 

technologies such as real-time analytics, machine learning, 

and embedded systems including sensors, sensor networks, 

home, and building automation.  

The Internet of Things (IoT) provides an ideal 

environment for implementing swarm intelligence solutions.  

First, each thing can act autonomously.  

Second, each thing can act locally without regard 

to global performance. Third, things can have similar roles. 

For instance, all thermostats have the same performance 

expectations and the same expected behaviors as do 

network routers.  

In this paper, we examine how Swarm Intelligence (SI) can 

be utilized when implementing IoT ecosystems. We do not 

examine SI concerning the framework of the Internet of 

Everything (IoE) which involves people, data, processes, 

and things.    
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We first identify the relevant background in SI and 

ABM. We then determine the underlying framework and 

conditions for implementing SI, in general, using agent-

based modeling. We provide a system architecture for 

utilizing SI in the IoT ecosystem. 

2. SWARM INTELLIGENCE, ABM, IoT 

Swarm Intelligence (SI), Agent-Based Modeling 

(ABM), and IoT have been increasingly explored as 

methodologies to solve complex problems or to more 

efficiently solve problems. The problems range from 

communications networks to vehicle routing to business 

problems. In this section, we will discuss the background 

in these areas and related research. 

2.1 SI for Optimization and decision making 

One of the key areas of application of SI is in 

optimization. As a consequence, SI has been applied to 

routing problems in communications networks [5], [6]. It 

has been proposed for vehicle routing [7] and general 

traffic routing including pedestrian traffic [8]. Prominent 

among the optimization algorithms are Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), 

and Artificial Bee Colony Optimization (ABCO) [8]. These 

have been used for a single objective and multi-objective 

problems. 

It is the nature of SI that decision making is 

distributed [9]. This distributed decision-making leads 

from a simple task to a complex or larger task. The 

interactions between the swarm members and between 

swarm members and the environment are under 

decentralized control. These interactions lead to self-

organization that results in emergent behavior from the 

swarm. A distributed form of decision-making results in a 

system that is more efficient, effective, and scalable than a 

centralized control form [10]. There are a variety of SI 

algorithms focused on providing faster and more robust 

solutions to solve complex problems. Each of the 

algorithms is better suited for different classes of problems 

[10]. 

2.2 Agent-Based Modeling 

Agent-Based Modeling (ABM) is a modeling 

methodology based on a network of agents. The agents are 

autonomous. Each agent has a set of rules (decision 

making), attributes, and behavioral responses to the 

environment including other agents. It is a bottom-up 

method of modeling. In this regard, ABM can have a role 

in investigating SI.    

Additionally, agent-based learning can enable 

agents to adapt to changes in the environment. Internal 

changes are made which results in changing behavioral 

responses. Agents can have learning capabilities that allow 

them to adapt to changes in the system, altering the internal 

attributes and the behaviors towards other agents. In this 

regard, ABM is useful for modeling complex adaptive 

systems that require computational complexity not feasible 

with other approaches [11].    

ABM has been explored for applications in 

ecology, biology, telecommunications, and traffic 

management. For IoT, ABM has been applied to distributed 

decision making in IoT networks for road traffic 

management [11. 

2.3 IoT 

Since its inception, IoT has received a lot of 

research interest in terms of application areas, system 

architectures, and theory [12]. Most of the research has 

been on the communication aspects of IoT devices [12]. 

However, there is a need for cognitive, agent-based 

computing frameworks [13]. Toward that end, research has 

been conducted in developing Smart IoT. Smart IoT is 

defined as an ecosystem that supports making sense of all 

the IoT data and information [14]. Semantic, Cognitive, 

and Perceptual Computing have been introduced to deal 

with the challenges of providing Smart IoT [15]. The 

characteristics of Smart IoT are: 

• Heterogeneity of devices  

• Incompleteness in covering the 

environment such sensors not reaching all 

areas. 

• Uncertainty-distributed networks can have 

issues with veracity 

• Dynamism-IoT devices are constantly 

impacted by the environment. 

We discuss addressing the IoT with embedded intelligence 

in the rest of the paper. 

3. Achieving SI in IoT 

As discussed before Swarm Intelligence (SI) is the 

collective behavior of a system of interacting agents. It is 

a self-organized and decentralized system based on 

intelligence in the agents. In this section, we will identify 

the underlying requirements for achieving swarm 

intelligence. We first present two popular, biologically 

inspired, swarm intelligence algorithms [16]. We then 

identify the key aspects that result in swarm intelligence. 

3.1 Ant Colony and Bee Colony Optimization 

Ant Colony Optimization (ACO) is based on ants 

capable of performing complex tasks without central 

control. In nature, ants exist in colonies with ant to ant 
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communication achieved through pheromone signals. The 

pheromone is a volatile chemical that is dispensed by ants 

as they go about their tasks. The volatility of the 

pheromone plays an important signaling role that enables 

ants to achieve their outcomes. To a certain extent, ants 

move on a probabilistic basis. While an initial ant may 

have a long route from the food source to the nest, over 

time the path gets adjusted based on the strength of the 

pheromone and probabilistic action(direction) to take. 

Additionally, individual ants adapt their activity based on 

changes in the environment and interactions with other 

ants. For instance, ants switch from foraging to food 

retrieval or vice versa based on encounters with other ants 

and the current task they are carrying out. While an 

individual ant does not have intelligence, the colony can 

find the shortest path to their food or place the ant cemetery 

equidistant from the nest and the trash pile. Ant Colony 

Optimization (ACO) is based on path optimization in 

finding the shortest route to the food source.  

Bee Colony Optimization (BCO) is based on the 

idea that bees divide their tasks (work) among other bees. 

The tasks include foraging, storage, honey production, 

pollen collection, retrieving, and communication. Bees are 

capable of organizing the work of the colony to adapt to 

changes in the environment such as cooling the hive when 

the temperature rises above a certain point. Bees are good 

at organizing their colonies [17]. Like the ACO, the BCO 

algorithm is comprised of the following: 

• Bees divide into groups based on tasks 

• Unassigned bees scout for a food source 

• Food source detected is communicated to 

bees who begin collecting nectar by 

randomly going from  

one flower to another 

• Bees find the shortest path to the food 

source from the hive. 

• Bees communicate the path to other bees by 

signaling (waggle dance).  

• Bees collect nectar and return to the hive 

and store nectar. 

These algorithms capture key aspects of Swarm 
Intelligence: communication, locally controlled 

actions, probabilistic decision making, and emergent behavior 

resulting from mass interactions. The next section identifies 

the underlying requirements for achieving outcomes via 

Swarm Intelligence. 

3.2 Requirements for SI 

The underlying requirements for achieving 

outcomes via Swarm Intelligence are based on the study of 

ants and bees in the natural world [18]. Before we 

introduce the requirements, we want to address several 

assumptions that are made regarding swarms. A collective 

swarm system is made up of relatively stupid elements 

without a single intelligent controller. The behavior of the 

swarm emerges in a bottom-up manner not top-down. The 

system is adaptive between elements and the environment. 

The system self organizes, again without a master 

controller. Adaptive behavior occurs over time and a 

successful system becomes more intelligent over time. 

Finally, the more interactions between elements of the 

system the more reliable the behavior and the margin of 

error decrease.   

The fundamental principles [18] that lead to macro-

intelligence and adaptability are:  

• More is different-the interactions of the elements 

are statistically based, and a critical mass of 

elements is necessary for achieving global 

intelligence 

• More produces macro behavior-micro motives of 

each element occur in isolation and the 

combination produces macro outcomes. 

• Encourage random encounters-the space is 

explored randomly and large numbers doing 

enables the elements to gauge and effectively alter 

the microstate of the system. 

• Look for patterns in the signs-one signal does not 

provide enough information but encountering 

many signals can result in a pattern being detected. 

This allows changes in the microstate being 

detected. 

• Pay attention to your neighbors-the interaction 

between neighboring elements enables the system 

to solve problems and self-organize.  

These have been resolved into five basic principles 

of swarm intelligence [20]: 

• The proximity’s principle-each agent responds 

based on conditions in the environment affected by 

interactions among the individuals. 

• The quality principle-the swarm is able to respond 

to the quality of the environmental factors. 

• Diverse response principle-each individual should 

not commit its activities along excessively narrow 

channels. Diversity enables adaptation. 

• Stability principle-the population should not 

change its mode of behavior for every change in 

the environment changes.  
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• Adaptability’s principle-through individuals the 

swarm’s behavior can be changed in response to 

the environment when necessary.  

In this section, we identified the underlying 

principles for achieving SI. These are used as the 

requirements for a system architecture designed to provide 

Swarm Intelligence in an IoT network. The next section 

discusses the overview of the elements of the SI IoT 

architecture. 

4. Toward an SI IoT architecture 

Applying SI to IoT needs to consider that a SI will 

be applied in the human context. The first step toward this 

is to take into account the differences between natural 

systems such as ants and man-made systems such as IoT 

[21]. Additionally, man-made systems are intentionally 

designed and created. One key difference is the proximity 

aspect of a swarm. Physical proximity, a requirement in 

swarms, is not always possible nor always desired in man-

made systems. However, the notion of proximity can be 

implemented through modes of communication. This can 

result in the self-organization of connected agents. Another 

difference is that the agents in the man-made systems are 

directly programmable while swarm agents require 

evolutionary changes over time. Since man-made systems 

do not evolve naturally, conscious implementation of SI 

needs to occur with specific goals as outcomes. This leads 

to a hierarchical organization. In the natural world, this 

occurs by changes in the system state that triggers swarm 

activity. Such as when the queen moves from one nest to a 

larger next.  

Three schools of thought can be found in the 

literature on implementing SI in man-made systems. Each 

focus on SI from a specific angle [21]: 

1. Algorithmic school: This approach addresses the 

development and application of SI inspired 

mathematical algorithms to resolve computational 

problems.  

2. Organizational school: This group investigates 

how SI principles can be applied in the design of 

processes and structures where the swarm’s agents 

are people. 

3. Automation school: Here they consider 

automated devices such as robots, computers, or 

software as the agents. The objective is the 

application of SI principles to improve the 

execution of specific tasks, often employing the 

algorithms developed by the first school. 

The architecture we propose here follows the third 

school with the development of a man-made autonomous 

system. This system can identify, compose, and select 

from among alternative courses of action to accomplish 

goals. The state of the agent, the environments, and its 

local memory are used in this regard to adapt and at times 

deal with unplanned situations. 

As discussed before there are advantages in using 

SI principles in the design of man-made autonomous 

systems [21], including: 

• Parallelism-tasks can be decomposed and 

performed in parallel, 

• Efficiency-tasks can be decomposed so that 

different agents of the system can cooperatively 

achieve a better end-result than individuals. 

• Fault tolerance-an individual agent does not 

necessarily affect achieving a given task. 

In general, there is a lack architectural knowledge 

of IoT focused approaches [22]. The potential for 

providing an IoT platform that results in smarter devices, 

intelligent ongoing processing, and communication has 

motivated recent research into deriving IoT architectures. 

An IoT system can be defined to be based on a number of 

functional blocks that facilitate various system functions 

such as sensing, identification, actuation, communication, 

and management [22].  

These functional blocks are: 

• Device: Devices provide such capabilities as sensing, 

data exchange, data collection, communication, 

actuation, control, and monitoring activities. Basic 

capabilities can include data storage, memory, 

network connectivity, and audio/video interfaces. 

• Communication: This block performs the 

communication between devices and with remote 

servers based on standard network layers and 

protocols. 

• Services: A variety of services are provided such as 

device modeling and control, data management 

and analytics, and device identity management. 

• Management: This block manages the operations 

of an IoT system. This can be seen as a central 

controller component. 

• Security: This block provides standard security 

operations such as authorization, privacy, and 

device security. 

• Application: The Application layer acts as an 

interface that provides necessary modules 

to interrogate the system in order to get system 

status to control and monitor various aspects of the 

IoT system.  
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These functional components can be characterized 

as being centralized systems-oriented based on well-

established networking protocols. While these functional 

operations will need to be addressed, in this research we 

focus on the architectural requirements for deriving 

intelligent systems.   

The underlying swarm intelligence aspects that are 

the drivers for an SI IoT system [23] are: 

• Cooperation: agents cooperate so that non-

deterministic, complex, collective behavior 

emerges to solve complex problems. 

• Self-organization: The bases of this are positive 

feedback (amplification), negative feedback (to 

counter-balance and for stabilization), amplification 

of fluctuations (randomness, errors, random walks), 

multiple agents to agent interactions, and a 

continuous tension between positive and negative 

feedback. 

• Emergence: complicated intelligent behaviors 

emerge from simple agents following simple rules. 

• Imitates nature: the man-made swarm imitates 

natural swarm behavior such as foraging (search 

for resources such as food), construction of the ant 

colony, move in the environment, attack a threat, 

or retrieve food from a source. 

In this regard, IoT needs to provide key operations that 

can facilitate achieving the SI principles [24]. These key 

operations are: 

• Dynamic and self-adapting: IoT devices 

dynamically adapt to the changing contexts 

(environment, other devices, or clients such as 

users), system status, and take actions.   

• Self-configuring: A large number of devices work 

together to provide a designated self-organizing 

functionality. 

• Interoperable communication protocols: IoT 

devices support a variety of interoperable 

communication protocols to communicate with 

other devices and the environment. 

• Unique identity: Each IoT device has a unique 

identity that can allow meta-knowledge of the 

specific device as well as the current status. 

• Integrated into information network: IoT devices 

can be integrated into an information network to 

allows communication with other devices and the 

environment. Heterogeneous IoT devices can 

dynamically discover other devices or be 

discovered. This can be used to derive networks of 

devices for specific purposes such as traffic 

management. 

• Context-awareness: Devices such as sensors that 

get physical and environmental information can 

provide knowledge about the environment – the 

context. 

• Intelligent decision-making capability: Multiple 

agents collaborate to make a decision. 

 A four-level architecture based on Swarm 

Intelligence was proposed for achieving Smart Cities [25]. 

They define a smart city as a whole system composed of 

several sub-systems where each sub-system is composed 

of a set of applications and each application is a swarm of 

entities (sensors and actuators). The smart city entities need 

or provide resources to other entities from the same or 

different groups. Thus, the four levels are system, 

subsystem, application, and sensor/actuators. This system 

shows promise in addressing the underlying swarm 

intelligence principles.  

The architecture framework we explore here is 

more general in nature. We envision that there are four 

layers in the architecture similar to [25].  First, there is a 

cognitive layer that addresses the key features of SI.  The 

next layer is that of communication which is based on 

channels of communication for the system. The channels 

must be robust enough that “messages” are able to reach 

the intended recipients similar to how the internet network 

protocols work. The third layer is the search space. This is 

the agent level in the system. Additionally, the identity of 

each agent must be discernable and each agent’s status and 

other information can be queried. This requires that each 

agent (or the system) maintains agent-based information. 

This localization of information occurs at the agent level. 

The fourth layer is the sensor/actuator layer. This 

addresses the fact that not all devices are agents. Figure 1 

provides an overview of the system.
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Figure 1: Four level architecture for embedding SI in IoT 

 

            

The cognitive level provides access to the system at a 

meta-level. This layer can provide system status 

information. The cognitive layer also provides provide 

physical and logical views of the system both at the macro 

and micro perspectives. This level has the cognitive 

capabilities to sense (perceive), reason, and act. While the 

same capabilities occur at the agent level, at this level the 

capabilities are global at the system level. So, the entire 

system can respond. This level can initiate goals for the 

system or the lower levels. Adaptation can be introduced 

here as well as changing or adding to the underlying 

communication layer, to the agent level programming, or 

the sensor/actuator code. This level is necessary to initiate 

the agent-based activities. Since swarms do not have a 

centralized controller because they evolved naturally, it is 

necessary to jumpstart the necessary intelligence. Through 

the cognitive layer goals and tasks are set at the global and 

local levels. 
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layer as well as obtain and provide device and system 

information. Several channels of communication are used 

to compartmentalize the different types of communication 

such as goal setting, device status, programming 

instructions, and task assignment. This layer provides 

communication in both directions. A key channel is this 

level is a stigmergy channel [26]. Stigmergy is a 

mechanism for indirect communication between agents or 

actions. The idea is that an agent leaves a trace in the 

environment (the search space) that affects succeeding 

actions or agents. This can result in reinforcing system 

behavior that has evolved. Stigmergy supports self-

organization resulting in complex forms without planning, 

control, or direct communication between agents. It 

supports collaboration between simple agents that have 

little intelligence, memory, or awareness of other agents. 

              The next level is the search space. This can be a 

physical space such as agents (cell phones) moving 

through the city or a virtual space such as communities of 

shared interest via the internet even though the individuals 

may be geographically separated. Individuals can be 

devices or people. Since agents can have local decision 

making based on interactions or stigmergy information, 

capabilities such as adaptability, parallel activity, self-

organizing, and perception are available to the agents. By 

examining activities at this level, the system can adapt 

accordingly. For instance, the system can determine that 

traffic is backing up and reroutes automobiles. This type 

of information is already available in mapping applications 

that display the level of traffic. Drivers then may take 

appropriate action.  In some cases, the applications provide 

updated directions in real-time based on conditions. 

Similarly, this occurs on the internet when internet 

messages are rerouted based on the current state of the 

outgoing network paths.   

            The sensor/actuator layer deals with signals. The 

focus of these devices is primarily to provide raw data and 

carry out actions. At the same time, it is possible that a 

device can be a combination of agent and sensor/actuator 

technology.  For instance, a security camera may contain 

processing that can determine that the actions of a person 

are suspicious and take a picture or send an alert. A simple 

form of this is outdoor lights that contain a motion sensor. 

An additional aspect to this level is that the devices 

individually or in combination can perceive. This type of 

perception is specific to the devices and based on the 

environment. This is similar to how an ant determines that 

it is the type to change the current task from foraging to 

exploring as the food source is getting depleted or how 

sensors in a stream can detect chemical runoff in 

combination as well as to detect the source.   

5. CONCLUSION 

            In this paper, we examined the role of Swarm 

Intelligence in the IoT. The specific aspects of SI are 

inspired by the study of social insects such as ants, 

termites, and bees. We emphasized that SI principles and 

underlying characteristics can have a strong role in 

developing SI IoT systems. While there has been significant 

and interesting research in the application of SI to IoT, to 

a certain extent the research has been focused on specific 

applications. The goal of this study is to broaden the focus 

and understand the overall framework for SI embedded 

IoT. We propose an architecture for integrating Si-based 

algorithms in IoT-based systems. At the same time, we 

chose to keep the study general and did not examine 

specific technical aspects such as communications 

protocols, network interfaces, or the OSI model. As future 

work, we plan to explore the implementation of the four-

level architecture.
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