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 Abstract 

Aboveground biomass (AGB) of Avicennia marina forest was mapped using airborne LIDAR-derived metrics in 

Eastern Mangrove Lagoon National Park,Abu Dhabi. From small footprint near-infrared LIDAR, multiple 

percentile heights were calculated using a neighbourhood algorithm. Multiresolution image segmentation was 

then employed to transform the 2D LIDAR-derived image into structurally homogeneous units. Given that 

neighbourhood size affects the calculation of the height metrics, neighbourhood sizes with 3 and 5 m radii were 

tested to evaluate workflow performance. AGB measurements from twenty field sample plots, each 154 m², were 

incorporated into a machine learning regression tree to map per-segment biomass throughout the study area. 

Based on in situ reference, the larger 5 m neighbourhood resulted in higher accuracy (RMSE= 10.17, R= 0.87, 

R²= 0.76) and was thus selected for biomass estimation. Final segmentsizesranged from 42 to 20,000 m² with an 

average of 2,445± 118 m², whereas biomass density per segment ranged from 0.23 to 13.18 (kg/m²) with an 

average of 5.16 ± 0.14 (kg/m²) and a total of 14,850 kg. Additionally, about 49% of the study area had a low 

biomass density (≤ 4.15 kg/m²), 23% had a moderate biomass density (4.16 to 8.01 kg/m²), and 28% had a high 

biomass density (8.02 to 13.17 kg/m²). Based on aper-pixel canopy height model generated from the same LIDAR 

mass points, minimum, average, and maximum height was0.1, 3.0, and 7.9 m, respectively. While this study 

represents the first LIDAR-derived AGB and height inventory of Avicennia marina in the UAE, it also combines in 

situ reference, segmentation, and multiple percentile height statistics in an innovative machine learning approach 

that is replicable for other mangrove inventories. The study demonstrates encouraging results in biomass 

mapping of mangroves in the UAE. 
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Introduction 

 

Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with 

limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to 

society, economy, and the environment (Alsumaiti, 2017). Detailed knowledge of the various mangroves’ physical 

and biological distinguishing properties such as height, trunk diameter, crown spread, and biomass is important for 

proper coordination, preservation, conservation, and change monitoring (Wannasiri et al. 2013; White et al. 2013). 

In fact, one of the most vital measures of mangrove forest ecosystem structure and function is aboveground biomass 

(AGB). Mangrove AGB is important for evaluation of carbon sequestration and forest response to climate change 

and anthropogenic disturbances (Bombelli et al. 2009; Houghton, 2009). According to Jackowski et al. (2013), 

mangrove store up to four times more carbon than any other tropical forests. 

 

Estimation of AGB from forest inventory plots generally includes both the measurement of diameter at 

breast height (DBH) and ideally tree height. AGB can be estimated from these two measurements using algometric 

equations (White et al. 2013). However, it is very unlikely that enough plots can be inventoried in this way to 

characterize a large forested area due to restrictions in resources, time and access, and it is impractical to monitor 

the forests using in situ data alone (Rasolofoharinoro et al.1998; Laba et al. 1997; Ramsey and Jensen, 1996; 

Aschbacher et al. 1995).   

 

Several remote sensing technologies can be used to estimate AGB of a large forested area (Song, 2013; 

Mitchard et al. 2009). First, there is the use of optical data and subsequent estimates of spatially-averaged biomass 

values. Optical remote sensing typically makes use of visible and near-infrared reflectance from the surface of the 

earth to produce images. This lays a foundation for contemporary global-scale vegetation monitoring through 

numerous sensor systems such as Lands at, ASTER, IKONOS, MODIS, World View and others (Jensen, 2005).  

Such tools find wide application in research aimed at linking forest biomass measurements from in situ data to those 

obtained from aerial or satellite images. Major obstacles to this approach include persistent cloud cover and the 

presence of ubiquitous sun shadows. Furthermore, most satellite images obtained through optical sensors do not 

provide important vegetation characteristics such as canopy height. While this information can be derived via stereo 

analysis of overlapping imagery, the stereo imagery may be costly, have a limited spatial coverage, and demand a 

huge allocation of time to analyze (Geotz et al. 2009; Lucas et al. 2000). 

 

Second, researchers may determine values of characteristics such as volume or height using laser-based 

airborne light detection and ranging or LIDAR which captures large numbers of unevenly arranged x, y and z 

positions within the volume of the forest structure (Fatoyinbo& Armstrong, 2010). The sensor in a LIDAR system 

continuously records the amplitude of the pulse registered as initiated by reflectance from laser targets of the forest 

canopy. Through this system, the vertical structure of vegetation can be estimated in remarkable detail, thus 

providing a clear advantage compared with optical imagery. Small-footprint airborne LIDAR systems are capable 

of detecting objects with a horizontal accuracy of less than one meter and a vertical accuracy of a few centimetres 

(Aguilar & Mills, 2008; Simardet al. 2006). The structural form of mangrove forests (in terms of height and 

density) may be extracted from LIDAR and is very applicable in the derivation of forest AGB (Wannasiri et al. 

2013). To use LIDAR data for forest biomass estimation, machine learning approach is used to understand the 

relationship between AGB calculated from in situ data (based on allometric equations) and LIDAR height metrics 

(White et al. 2013).  

 

Zhao et al. (2012) note that several researchers have efficiently utilized LIDAR data to estimate forest 

biomass based on relationships between LIDAR canopy heights metrics, such as mean canopy height and canopy 

height percentiles. However, recent studies attempt to predict AGB using image segmentation of LIDAR canopy 

height metrics, which allows the estimate of AGB to be conducted on structurally homogeneous units of forested 
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areas.The image segmentation process reduces the variability of subsequent AGB estimations. For example, 

Riggins et al. (2009) reports that the coefficient of determination values (R2) of LIDAR-derived AGB estimates 

analyzed on a per-segment scale is higher than corresponding values from a plot level study. Biomass estimation of 

various forest environments, especially complex, heterogeneous ones, should benefit by machine learning analysis 

of multiple LIDAR derived canopy height metrics and image segmentation approaches.  

 

Various biomass models have been published for different types of forests worldwide including mangroves 

(Poudel &Temesgen, 2016; Lu et al. 2012; Zhao et al. 2009; Simard et al. 2006). However, none have been created 

to estimate biomass of Avicennia marina forests in Abu Dhabi. The main objective of this study is to predict and 

characterize AGB of mangrove forest in the study area through innovative processing of small footprint LIDAR. To 

this end, a combination of LIDAR-derived height percentiles statistics, structurally homogenous forest segments, 

and in situ reference data were organized in a machine learning environment. Through this approach, per-segment 

estimates of both a) total AGB per unit area, and b) biomass density classes were extracted for the study area. 
 

Materials and Methods 
 

1. Study Area 
The study area is found in Eastern Mangrove Lagoon National Park, which is the first mangrove protected 

area to be designated in the United Arab Emirates (UAE). The main vegetation cover in the study area includes 

Avicennia marina, also known as grey mangrove, and salt marshes dominated by Arthrocnemummacrostachyum. 

The study area is characterized by hot arid climate conditions, nearly flat topography, and several interconnected 

tidal creeks. The mangrove stands in the forest are usually inundated by tides twice daily. The study area is 

contained within a 1.7 km²rectangle with an upper left corner at 24°27'20''N and 54°25'18''E, and a lower right 

corner at 24°26'52''N and 54°26'24''E (Figure 1). 

 

 
Figure1.Location of Abu Dhabi Island (top), and location of the study area (bottom; yellow box) within Eastern Mangrove Lagoon 

National Park (green polygon) in Abu Dhabi, UAE. 
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2. Plot Design and In SituSurvey 
 

An in situ survey was conducted throughout the study area from January to April 2014 using fixed area 

circular plots. Circular plots are easier to establish in situ compared to square plots because only the centers of 

circular plots are registered unlike those of square plots that have four corners. Furthermore, circular plots have 

approximately 11% less perimeter compared to square plots of an equal area, which minimizes the negative impact 

of edge effects such as the error in metric calculation (White et al. 2013; Wulder et al. 2012). 

 

Several studies report that circular ground sampling plot sizes range from 50 m² (8 m diameter) to 2500 m² 

(56 m diameter)(Thomas et al. 2008; Naesset&Okland, 2002). However, these studies do not clarify the choice of 

sampling plot size. Even though there is no universal optimum plot size to study forest attributes (Frazer et al. 2011; 

Gobakken&Næsset, 2009), White et al. (2013) recommend that a ground sampling plot should have an area of at 

least 200 m² (16 m diameter). They recommend such plot size to minimize errors in modelled outcomes associated 

with ground data that does not capture a full range of the forest structural variability as captured by LIDAR data. 

Furthermore, this plot size increases both the efficiency of sampling and the accuracy of target and explanatory 

variables. In the present study, the ground sampling plots covered an area of 154 m2 (14 m diameter). Even though 

they were slightly smaller in size than those recommended by White et al. (2013), the high-density trees in the study 

area meant that a large number of trees were sampled.   

 

Based on the Natural Resource Information System (NRIS) of the United States Department of Agriculture 

(USDA), it is recommended to have at least one sampling plot per every 0.04 km². Since the Abu Dhabi Island 

study area covers 1.7 km², ideally 42 plots should be established. In the present study, only 20 plots were 

established due to a number of environmental factors: 1) in situ access in mangrove swamps was extremely difficult 

due to the presence of mud, large root-like mangrove structures on the marshy ground, and the rise and fall of tidal 

waters; 2) foot travel through the very dense forest to collect tree attributes was impractical; and 3) collection of 

tree attributes was limited to the winter season (January-April) due to dangerously high temperatures during the 

summer. Fortunately, the 20 sampling plots covered a clear range of forest structural variability present in the study 

area. In order to capture variability within the study area, the locations of the sampling plots were randomly 

distributed within very accessible forested areas close to the main water creek (Figure2). 

 

 
Figure 2. Locations of 20 circular ground sample plots in the study area. 
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A GNSS receiver was used to determine the coordinates of each sampling plot. Several factors were taken 

into consideration to record precise positions including atmospheric conditions, satellites’ geometry, number of 

location measurements at each point, multipath problems, and quality of GNSS equipment. Thus, a Leica Viva 

GS14 GNSS RTK receiver was used to obtain the highest level of accuracy, and real-time differential correction 

was applied to improve the precision of location data collected. The average horizontal accuracy of the location data 

is estimated to be 7 ± 4 cm. 

 

Mangrove trees’ structural attributes were collected by direct measurements at the ground plot level, 

including height and diameter at breast height (DBH). Using a height stick, the height of individual trees was 

measured. While using a diameter tape, the DBH was measured at 1.3m from the ground. Generally, a minimum 

threshold for measurement is specified between 5 to 10 cm and all trees with a DBH larger than this threshold 

should be measured (McGarrigle et al. 2011). Nevertheless, most of Avicennia marina trees in the sampling plots 

have a DBH value of ≤ 5 cm (approximately 69%). Thus, all trees with DBH ≥ 1 cm were measured. For trees with 

multiple trunks, each trunk was measured separately. A total of 2,216 mangrove trees were measured, and their 

structural attributes were recorded. 
 

 3. Plot-Level AGB Estimation 
 

AGB, which is the quantity of vegetative matter per unit of area, is calculated as the dry weight of tree 

elements above ground including stems, branches, and leaves (Houghton, 2005). AGB was estimated for each tree, 

and then for each plot. In situ AGB was estimated from DBH ground measurements using the following allometric 

equation:   

              M = 𝑎𝐷𝑏 

Where M is the total aboveground tree dry biomass (kg), D is diameter at breast height (cm), and a and b are 

constants, which are estimated to be 0.5317 and 1.7476, respectively (Kirui, 2006).     
 

AGB can be estimated using several variables such as the tree height, DBH, or both. However, in Kirui’s 

study (2006) which was conducted in Kenya, the estimate of Avicennia marina aboveground biomass was best 

determined using only DBH values. Kirui found a significant relationship between the DBH and the dry weight of 

Avicennia marina, where r2 = 0.96. Thus, Kirui’sallometric equation was used to estimate AGB since no allometric 

equations have been developed for Avicennia marina in the study area. Nevertheless, a better estimation of AGB in 

the study area can be obtained by measuring the oven-dry-weight of Avicennia marina of all sizes, which can be 

used to develop refined allometric equations for precise AGB estimation. 
 

 

4. LIDAR Data 
 

Airborne LIDAR mass points (Figure 3) were collected in January 2014 using an Airborne Laser Terrain 

Mapper (ALTM) 3100 EA system mounted in a Beech craft King Air 350 aircraft. The aircraft was operated by 

Bayanat Company, which provides national geospatial products and services in UAE, with a flight altitude of 

approximately 1,520 m above ground level (AGL), a flight speed of 90 m per second (175 knots), and a scan angle 

varying from -25° to 25° from nadir. The LIDAR system was configured with a pulse rate of 100 kHz and recorded 

first and last returns of an emitted laser pulse. LIDAR swaths measuring 1,420 m in width were acquired with laser 

footprints spaced approximately every 2 m beneath the flight path. LIDAR data was received in raw LAS format 

(version 1.2), which is an American Society for Photogrammetric and Remote Sensing (ASPRS) standard binary 

format for the interchange of LIDAR data and associated metadata. Most proprietary GIS software, such as ArcGIS 

Pro and LP360, supports LIDAR data that is provided in LAS file format. 
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Figure 3. Digital surface model created using LIDAR data acquired in Jan 2014 by Bayanat Company. Blue dots represent ground 

points with lower elevation values. Pink dots represent moderate elevations, and green dots represent relatively higher ground point 

elevations.  

 

5. LIDAR-derived Statistics 
 

            The first step in LIDAR data processing was to classify LIDAR points into three main categories: noise 

points, ground points, and high vegetation points. The noise points, identified as the very low or high points 

compared to the actual elevations of the study area, were identified and ignored. Usually, low points can be a result 

of laser multipath. On the other hand, high points can be caused by aircraft flying at low levels, birds, and/or 

atmospheric aerosols (McGaughey, 2014). Several software programs can be used to filter or classify LIDAR 

points; LAS tools were used in the present study for this purpose. Out of a total of 862,016 points, 79 noise points 

were ignored. Furthermore, the classification results show that the total number of ground points is 208,430; while 

the total number of vegetation points is 653,506. After classification, the modified LAS file was transformed to a 

single text file for convenient use in R statistical software. This text file contains information about x, y, z values 

for each LIDAR point, as well as the return number and class number. With such information, LIDAR-derived 

metrics can be generated, and various statistics can be calculated. 

 

             The next LIDAR processing step was to create grid points for the study area, separated by pre-defined grid 

spacing, using a neighbourhood technique. A neighbourhood cantered on each grid point was generated, and 

LIDAR points within the neighbourhood were extracted. This allowed statistics to be calculated based on the 

distribution of the points’ z (or elevation) value and then assigned as attributes to the grid points. This technique 

transforms discrete LIDAR points into 2D image layers showing the spatial distributions of LIDAR height metrics 

with user-specified resolutions and generalization extents. The user specified resolutions, equal to the grid spacing, 

control the amount of horizontal detail that could be revealed. In contrast, the generalization extents, or spatial area 

where LIDAR points are queried, are determined by the neighbourhood size and shape. The neighbourhood size 

should be large enough to include a sufficient number of LIDAR points to calculate statistics precisely. It should 

also be larger than the grid spacing to allow overlap between adjacent neighbourhoods.  However, neighbourhoods 

that are too large may result in masking spatial details and creating very similar adjacent grid points. Additionally, 

too large of a neighbourhood may include more LIDAR points falling outside the plots’ boundaries, presenting 

unwanted information to the plots and making subsequent biomass regression models inaccurate. Furthermore, the 
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pre-defined grid spacing affects the performance of the neighbourhood method.  For instance, large grid spacing 

results in coarse image resolutions but decreases the computing time. On the other hand, small grid spacing results 

in fine image resolutions but increases the computing time (Miyazaki et. al., 2014).  

 

             In the present study, grid points were created for the study area, including the 20 circular plots, and were 

separated by 0.5 m. The advantage of using such fine spatial resolution is to capture more spatial details and not to 

increase computing cost significantly due to the relatively small plot area. The spatial extents of the sampling plots 

were buffered by half of the neighbourhood radius. In this way, a sufficient number of LIDAR points is included to 

calculate statistics for grid points located at the plot boundaries. Two neighbourhood sizes, 3 and 5 m, were used as 

the neighbourhood radius in order to test the effect of different neighbourhood sizes and to select the most feasible 

size to be used to calculate LIDAR-derived height percentile statistics for the whole study area. For the 

neighbourhood with a radius of 3 m, a buffer of 1.5 m was used to clip the entire point cloud. In contrast, for the 

neighbourhood with a radius of 5 m, a buffer of 2.5 m was used. The combination of grid spacing and 

neighbourhood size contributes to the performance of the final regression models.  Thus, the performance of the 

models was considered to decide the best neighbourhood size to be applied for the entire study area. 

 

           An algorithm was prepared to create the circular neighbourhood windows cantered on each of the grid points 

to extract LIDAR points falling within the neighbourhood. This means that the window stopped at every point on 

the half meter grid and selected all LIDAR returns within its boundary. LIDAR-derived statistics, including total 

number of points, ratio of high vegetation points, minimum elevation, and height above the minimum elevation on 

the 5th, 15th, 25th, 35th, 45th, 55th, 65th, 75th, 85th, 95th, and 100thpercentiles, were calculated and assigned as 

grid attributes to describe the distribution of the z-value within a given neighbourhood. The calculations resulted in 

0.5 × 0.5 m 2D raster images with 13 layers, each representing a continuous statistical surface. However, when the 

numbers of LIDAR points was not sufficient to calculate statistics of some pixels within the raster images, an 

Inverse Distance Weighted (IDW) interpolation method was used to estimate the values of these pixels. For 

visualization purposes, the grid was transformed to multilayer images showing spatial distributions of LIDAR 

height metrics after they were clipped by the plot polygons.  
 
 

6. Biomass Modelling 
 

             Forest AGB can be extracted in at least four spatial scales: 1) individual tree level, 2) pixel level, 3) plot 

level, 4) and segment level. In this study, the segment level was chosen largely because this approach avoids 

difficulties associated with predicting AGB at the individual tree or pixel scales. Image segmentation was used to 

group individual pixels, with similar attributes (color, texture, contextual information and other image features), 

into image objects that correspond to real objects (Skurikhin, 2009). Different algorithms have been developed and 

used to find objects from given image layers including the multi-resolution image segmentation. This algorithm is 

widely used for segmenting canopy height models using eCognition software (Baatz&Schape, 2000). It employs a 

bottom-up process to connect similar pixels that represent a homogeneous forest structure in the study area. This 

process is a spatial clustering technique that would place each pixel in the image into a segment based on the degree 

of similarity to the neighboring pixels, so it becomes more spatially meaningful than an arbitrary 1 × 1 m pixel. 

 

            In order to perform the multi-resolution image segmentation, eCognition requires some parameters to be 

configured manually (Table 1). The estimation of the scale parameter tool (ESP), developed by Lucian et al. (2010), 

and was employed to automatically determine the scale parameter. Two sets of raster images, each with 13 bands, 

were created using the multi-resolution image segmentation algorithm. The first was generated using a 

neighbourhood radius of 3 m, while the second using a radius of 5 m. The resulting image objects, or segment 

polygons, of connected pixels that represent homogeneous forest units, were created; and the mean values of all the 

height metric image pixels falling within the image object were taken as its attribute values. After assigning height 
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metric attributes to all the image objects of the plots, they were stored as ESRI Shape files to be processed in R to 

build AGB regression models. The known aboveground biomass of each plot, calculated based on in situ data and 

the allometric equation, was included in the model as the dependent variable. Decision tree regression equations, 

each employing rule-managed linear regression to predict the dependent variable, were developed from the LIDAR 

percentile height values of each image object. Using Cubist software, regression models to estimate AGB per 

square meter in the image segments were developed. 
 

Table 1. Image segmentation parameters 
 

Parameter Value 

Use of Hierarchy 1 

Starting scale level1 1 

Step size level1 1 

Starting scale level2 1 

Step size level2 3 

Starting scale level3 1 

Step seize level3 5 

Shape 0.5 

Compactness 0.5 

Number of loops 100 

 
The size of the neighbourhood affects the calculation of LIDAR derived height metrics and statistics, and 

therefore it affects the performance of the decision tree regression model. It is important to determine which of the 

two neighbourhood sizes (3 m or 5 m) is the most appropriate to be used to calculate LIDAR height metrics 

statistics in the study area. Thus, a 10-fold cross validation approach was applied to train models to evaluate the 

model performance. For each fold (10% of the data), regression models were generated using data outside this fold 

(90% of the data). Thus, a total of 10 models for each neighbourhood size were built. As seen in Table 2 and 3, the 

following statistics were used to evaluate the model performance with the different neighbourhood sizes: root mean 

square error (RMSE), correlation coefficient (R) between predicted target values and reference target values, and 

adjusted coefficient of determination (R²). These statistics were calculated on the training set as well as the 

validation set.Tables4 and 5 show the statistics of the model performance using all of the data with the two 

neighbourhood sizes. 
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Table 2. The statistics of the 10-fold cross validation approach using a neighbourhood size of 3 m to evaluate 

the model performance. 

 

 

Fold# 

Training Set Validation Set 

RMSE R R² RMSE R R² 

1 13.84 0.71 0.50 15.52 0.59 0.33 

2 14.39 0.64 0.40 17.98 0.35 0.08 

3 13.71  0.73 0.52 12.44 0.42 0.14 

4 14.73 0.66 0.43   8.23 0.81 0.64 

5 13.39 0.69 0.47 19.18 0.57 0.30 

6 15.13 0.61 0.37 11.70 0.51 0.23 

7 11.44  0.78 0.61 25.48 0.54 0.26 

8 11.27 0.83 0.68 16.00 0.50 0.21 

9 13.09 0.74 0.55 14.71 0.60 0.33 

10 15.16 0.62 0.38   9.89 0.54 0.26 

Average 13.61 0.70 0.49 15.11 0.54 0.28 

 

Table 3. The statistics of the 10-fold cross validation approach using a neighbourhood size of 5 m to evaluate 

the model performance. 

 

 

Fold# 

Training Set Validation Set 

RMSE R R² RMSE R R² 

1 9.88 0.89 0.79 12.21 0.68 0.44 

2 9.88 0.87 0.75 18.43 0.76 0.56 

3 9.99 0.88 0.77 15.96 0.58 0.30 

4 9.33 0.89 0.79 13.04 0.66 0.41 

5 9.92 0.89 0.79 10.38 0.69 0.46 

6 9.77 0.89 0.79 14.77 0.64 0.39 

7 10.76 0.84 0.71 13.18 0.66 0.41 

8 9.60 0.90 0.80 12.05 0.81 0.64 

9 9.95 0.87 0.76 17.86 0.83 0.67 

10 10.45 0.87 0.75 14.79 0.64 0.38 

Average 9.95 0.88 0.77 14.27 0.70 0.47 
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Table 4. The statistics to evaluate model performance using all data with the 3 m neighbourhood size. 

RMSE     R     R²   

14.10 0.66 0.44 

 

Table 5. The statistics to evaluate model performance using all data with a neighbourhood size of 5 m. 

RMSE     R     R²   

 10.17 0.87 0.76 

 

Results 
 

As seen in Tables2 and 3, higher average R and R² values of the training and validation sets are observed 

with a 5 m neighbourhood (training R= 0.88, training R²= 0.77, validation R= 0.70, validation R²= 0.47) compared 

to a 3 m neighbourhood (training R= 0.70, training R²= 0.49, validation R= 0.54, validation R²= 0.28). The average 

RMSE is lower with the 5 m neighbourhood (training RMSE= 9.95, validation RMSR=14.27) compared to the 3 m 

neighbourhood (training RMSE= 13.61, validation RMSR=15.11). These statistics indicate that Cubist models 

performed much better on the 10-fold training and validation data (of the cross validation approach) generated using 

the 5 m neighbourhood radius. It is noted that the model performance of the validation data is lower than the 

training data even with the 5 m neighbourhood radius. In order to increase the performance on the validation data, a 

larger neighbourhood size can be used. However, due to the relatively small plot size (7 m radius), it will not be 

reliable to used neighbourhood size larger than the size of the training plots. This would present unwanted 

information outside the plots, and would affect the accuracy of the model. 

 

Additionally, the model performance of all data using the 5 m neighbourhood (RMSE= 10.16, R= 0.87, R²= 

0.75) is significantly better than the 3 m neighbourhood (RMSE= 14.09, R= 0.66, R²= 0.43). The R and R² values of 

the 5 m neighbourhood are high enough to ensure the algorithms can provide reliable and accurate predictions on 

the data set. Since the 5 m neighbourhood corresponded to the best model performance, it was selected to calculate 

LIDAR statistics in order to estimate biomass for the entire study area. The image of the study area was segmented 

and the model was applied to each segment. Plots of known AGB, calculated from ground reference DBH 

measurements using allometric equations, were then utilized as training data to generate a model for predicting 

AGB in the remainder of the image. Biomass density of the 20 sampling plots ranges from 0.10 to 4.28 (kg/m²), 

with an average of 1.33 ± 0.24 (Table 6).The use of the Cubist model to utilize LIDAR percentile height statistics to 

image segmentation resulted in a segment-level aboveground biomass map of the study area as seen in Figure 4. 

The total number of the image segments is 715. While the size of the segments ranges from 42 m² to 20,005 m², 

with an average of 2,445 ± 117.88 m². The aboveground biomass density per segment ranges from 0.23 to 13.18 

(kg/m²), with an average of 5.16 ± 0.14. While the total aboveground biomass per segment ranges from 0.90 to 

76.89 kg, with an average of 29.88 and a total of 14,850.26 kg. 
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Table 6. Above ground biomass of the sampling plots estimated using in situ measurements and allometric 

equations. 

Plot # AGB (kg/m²) Plot # AGB (kg/m²) 

1 2.301 11 2.262 

2 1.559 12 2.527 

3 2.254 13 0.459 

4 0.610 14 0.407 

5 1.495 15 0.306 

6 0.882 16 0.417 

7 4.279 17 0.218 

8 1.475 18 0.103 

9 2.053 19 0.253 

10 2.061 20 0.645 

 

          Using Esri’s ArcGIS for Desktop 10.2, biomass estimates were classified into 10 classes from the lowest to 

the highest. The results indicate that 49% of the study area has a relatively low biomass density with values less 

than 4.15 (kg/m²), 23% of the study area has a relatively moderate biomass density with values ranging from 4.16 to 

8.01, and 28% of the study area has a relatively high biomass density with values ranging from 8.02 to 13.17kg/m².  

Furthermore, a canopy height model (CHM) was created of the whole study area using the classified LIDAR points 

as seen in Figure 5. The maximum height value of the canopy model pixels is 7.86 m, which means that no trees in 

the study area exceed this height. The average height value of the pixels is 3.03 m while the minimum height value 

is 0.12m. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  
Figure 4. The map represents aboveground biomass density (kg/m²) of each segment in the entire study area. Biomass estimates are 

differentiated into 10 classes from the lowest to the highest. 
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Figure 5. Canopy height model of the study area created in ArcMap and ArcScene (10.2). The darker green color indicates higher 

pixel values while the lighter green color indicates lower pixel values. 
 

Conclusion 
 

Several studies attempted to estimate aboveground biomass for various types of forests using an object-

based segmentation approach, while other studies attempted to estimate aboveground biomass using multiple 

percentile height statistics. The current study combined the two approaches with a machine learning environment 

and ground reference data. Riggins et al., (2009) research is considered one of the first attempts to combine these 

two methods together. As in Riggins paper, combing the two methods together provide a powerful approach for 

deriving forest biophysical variables from LIDAR data. Additionally, this study used spatial aggregation methods to 

estimate aboveground biomass from small foot-print airborne LIDAR data. Similar methods can be used to estimate 

other forest biophysical characteristics such as basal area or leaf area index of the whole study area. However, the 

collection of a limited number of ground sampling plots for training purposes is still required.   
 

The present study is considered as the first attempt to estimate and map aboveground biomass of Avicennia 

marina forest in Eastern Mangrove Lagoon National Park, Abu Dhabi. By utilizing LIDAR percentile canopy 
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height and image segmentation in a machine-learning algorithm and in situ reference data, a map of aboveground 

biomass density per segments was successfully produced. Segments-level processing divides the data into 

homogenous forested units according to the values of the neighboring pixels. Therefore, selecting the best 

neighbourhood size is critical for calculating LIDAR height metrics, and it influences the accuracy of the regression 

model. Due to the small size of the circular sampling plots (7 m radius each), the choice of neighbourhood size is 

limited. In this study two neighbourhood radii were tested (3 m and 5 m). The latter resulted in the highest model 

accuracy (RMSE= 10.17, R= 0.87, R²= 0.76).  However, if the training plots were larger in size, larger 

neighbourhood sizes could be tested in an attempt to increase the model performance.  

 

The number of the percentiles height layers affects the accuracy of the model performance. The fewer 

number of percentile heights means that less information about a canopy structure is taken into account. Some 

studies used 5 or 6 percentiles heights (Lim & Treitz, 2004; Mariappan et. al. 2012); however, this study used 11 

percentiles heights (0, 5, 15, 25, 35, 45, 55, 65, 75, 85,100th) to provide better information about the canopy 

structure at more elevations.  Although creating more percentiles layers increase the computing time, the small 

study area and the small LIDAR point cloud data (less than a million points) did not lead to any computing 

disadvantages.   

 

The biomass model presented in this study can be very useful in monitoring mangrove status and biomass 

conditions, leading to a better management of the forested areas in Abu Dhabi. Landscape mangrove biomass 

estimates are needed because of the importance of mangrove in the carbon cycle. By quantifying the amount of 

forest biomass, carbon emission and storage can be easily estimated. Thus, measuring mangrove extent, structure 

and biomass is vital for addressing climate change mitigation and adaptation.   
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